

European Thermodynamics Limited

Thermoelectric energy harvester with integrated, robust and autonomous sensing system

Energy Harvesting 2015, 19th March 2015, London Mr. Kevin Simpson- Technical Director

INDEX

European Thermodynamics' Overview

Basics on Thermoelectric Devices

Adaptive Thermal Energy Harvesting System

Energy Harvesting and the IoT Ecosystem

Example use

OVERVIEW. INTRODUCTION TO ETL

- Founded in 2001. Private Ltd Co.
- Bespoke thermal management
- 26 full and part-time staff

R&D department (6 Researchers) &

Engineering (8 Engineers and 2 Technicians)

- €5m annual turnover
- R&D projects part-funded by:

BESPOKE DEVELOPMENT FOR THERMAL MANAGEMENT

Mechanical and electronic design

Thermal and stress analysis

Prototyping

Production

LEADING SECTORS

Telecomm

TV & Broadcast

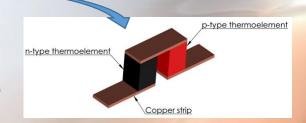
Lab & Medical

Automotive

Industrial

Military

BASICS ON THERMOELECTRIC DEVICES


The thermoelectric concept is a perfect solution for recovering waste heat to obtain electric energy

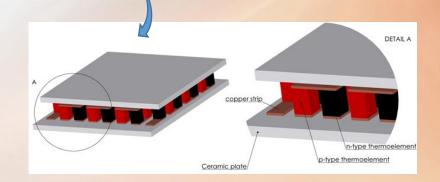
SEEBECK EFFECT

Basic unit of a thermoelectric device is the Thermocouple

N & p-type thermo elements connected electrically in series by a conducting strip

Units are arranged electrically in series and thermally in parallel, Module

Key Features


High reliability

Relatively inexpensive and small

Light weight

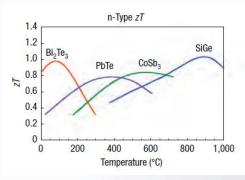
Compact

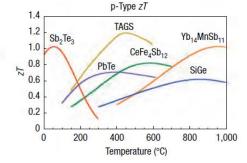
Quiet operation

TE MATERIALS FOR ENERGY HARVESTING. LIMITATIONS OF CURRENT MATERIALS

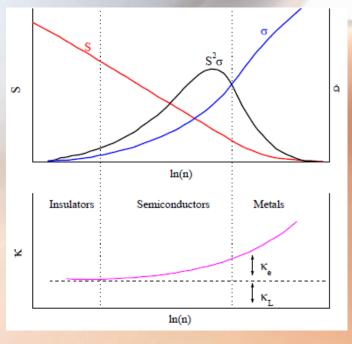
What makes a good thermoelectric,

α: Seebeck coefficient


 σ : Electrical conductivity


κ: Thermal conductivity

$$ZT = \frac{S^2 \sigma T}{(\kappa_L + \kappa_e)}$$


Up-to –date best Bulk Thermoelectrics: Bi₂Te₃/Sb₂Te₃, PbTe, Si-Ge

Bulk materials performance

PARAMETERS ARE ALL INTER-DEPENDENT

The ideal material should conduct electricity like a metal and heat like an insulator

[1]

Energy Thermal Harvesting System

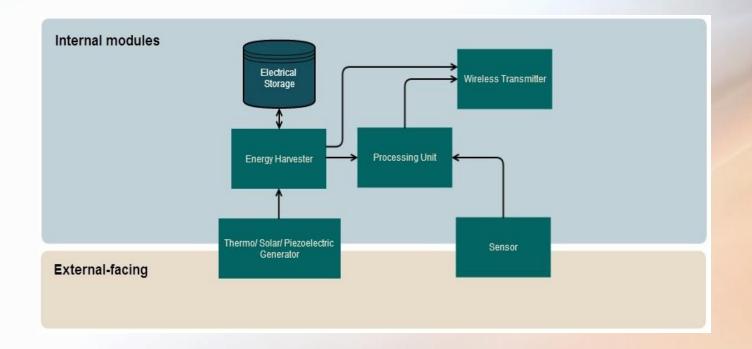
- •Autonomous battery-free wireless sensing system
- •Sensor data (e.g. temperature / humidity / pressure) transmitted under normal/harsh conditions
- •Low power requirements, thermoelectric power from temperature gradients
- MPPT system to maximise efficiency
- •Various heat sources possible, target warm and hot water sources
- All sensor data collected, burst of data via a wireless channel to a base station/node.

Features of Adaptive Energy Harvesting System:

Input voltage range: 50mV - 1000mV

Minimum input power:1mW, min. temp diff: 5°C

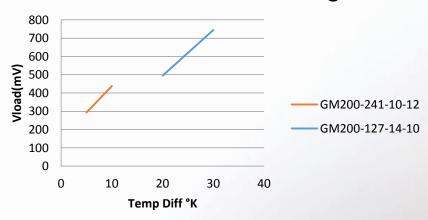
High priority "alert" capability in an "out of bounds" event


Switchable MPPT to MEffPT to keep energy storage topped up (when capacitor fully charged)

Wireless transmissions, embedded micro-processor with integrated RTC and analogue i/p, with digital I/O

Energy Thermal Harvesting System

▶ Hardware Architecture



Energy Thermal Harvesting System

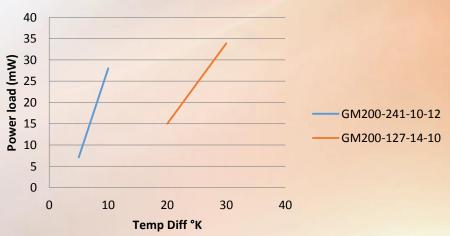

Thermal Harvesting potential

Table 1	°K	Measured		
Module	Temp Diff	Pload(mW)	Vload (mV)	Iload (mA)
GM200-241-10-12	5	7.1	294	24
GM200-241-10-12	10	28	438	64
GM200-127-14-10	20	15	495	30.5
GM200-127-14-10	30	33.9	745	45.5

Measured TE device voltage

Measured TE power

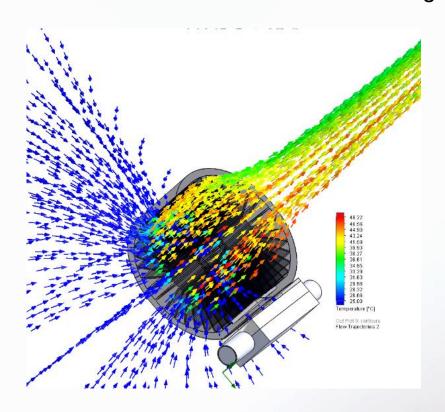
Thermal Energy Harvesting System

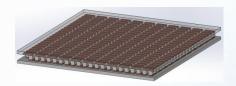
MPU Selection

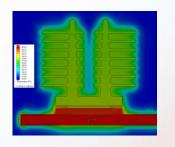
Table 1: Microprocessor options and features (top) and selection matrix (bottom)

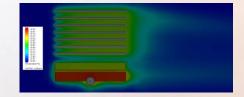
Part Selection	Features						
Part	Manufacturer	Power	Peripheral	ADC	Pins	Data	Real Time Clock
		Consumption	1/0			Width	
MSP430FR5739	Texas Instruments	81.4μA/MHz	3 spi/1 i2c	10 x 12	38	16	Yes
PIC16LF1503	Microchip	20μA @ 31kHz	SPI or I2C	10 bit x 8	14	8	Yes
STM8L101F2	STMicroelectronics	150μA/MHz	SPI	None	20	8	No

Design Criteria	Weighting	MSP430FR5739	PIC16LF150	STM8L101F
			3	2
Power	0.8			
Consumption	0.8			
Peripheral IO	0.5			
ADC	0.5			
Pins	0.2			
Real Time Clock	0.8			
Score		SELECTED	B/UP	

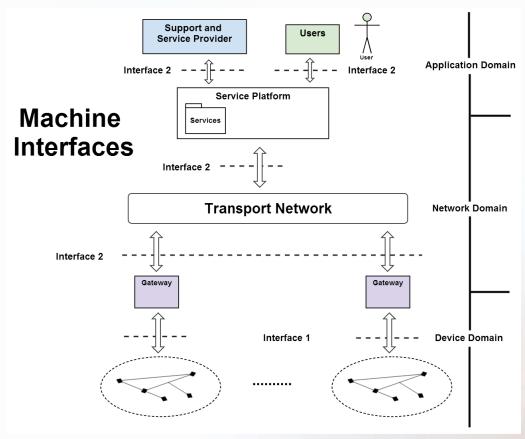

CC430 (MSP430 with integrated radio)



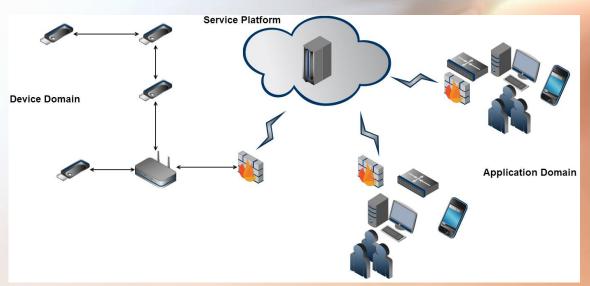



Thermal Energy Harvesting System

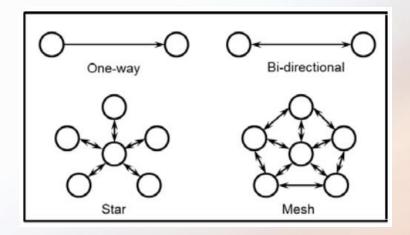
Mechanical / CFD Design



Module modelled within complete system design


Cut sections for showing natural convection movement

Design compromise for cost/performance/flexibility


Interfaces in a Wireless Energy Harvesting Sensor Network

Wireless Energy Harvesting Sensor Network Ecosystem

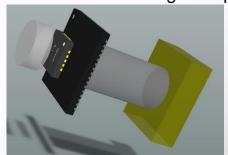
- **™**Network Topologies
 - Robust and cost effective point to point links
 - Mesh and star emerged as predominant for WiFi connected devices

- ▶ Power consideration
 - ▶ Point Point Ultra Low Power
 - ▶ Low Power Sub GHz mesh network for data collection
 - Low Power WiFi network as a gateway and big data processor or real-time sensor
- Mardware Independent Platform within a Geo-Distributed network
 - Single board computers (eg. Arduino), PCs, Cloud
- Real time capability
 - Connection to data intensive analytics platforms (eg. AWS Cloud)

- Cost reduction challenges
 - ► Industrial and Harsh environment Special Enclosures and connectors
 - Radio Interfaces FCC/ETSI Certified modules or design your own?
 - Adoption of low power mesh networking software
 - ► Standardised sensor assemblies or custom made for specific fields?
 - ₩ 3D assembly for high volumes

Highly integrated Solutions

▶ Data Processing and RF transmission - Mixed Signal SoC solutions

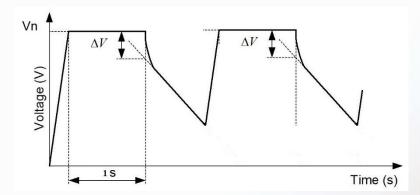


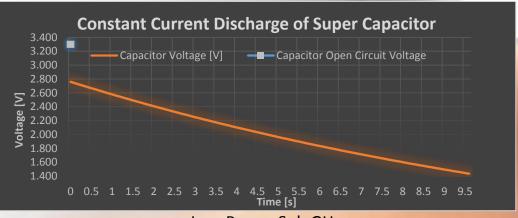
Ultra low power - Sub GHz

Low power WiFi

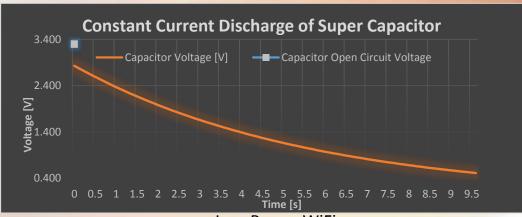
► Special applications – Extreme High temperature applications

Low Voltage (<100mV) harvester



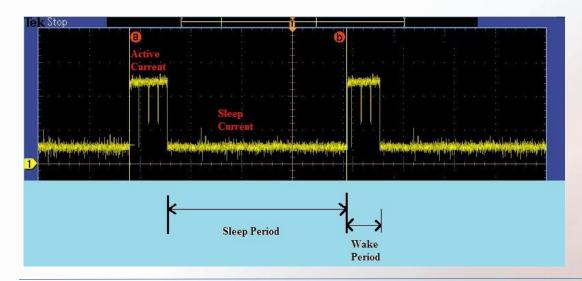

High ESR Capacitor

► Power Budget Considerations


 $\label{eq:total_average_current} Total\ Average\ Current\ = \frac{Inactive\ Current\ x\ Inactive\ Time\ +\ Active\ Current\ x\ Active\ Time}{Total\ Time}$

- Charging from intermittent sources
 - ▶ Internal resistance, size of super-capacitors
 - ▶ Duty cycle limitations

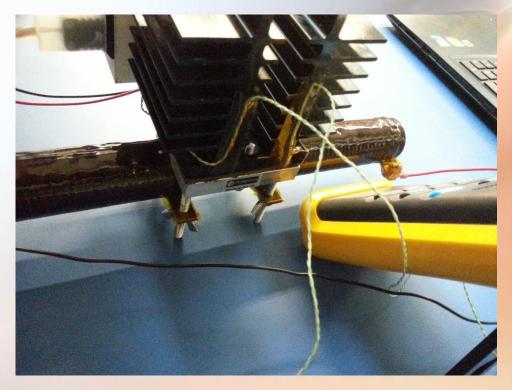
Low Power Sub GHz



Low Power WiFi

Min. Power Budget Considerations

Low Power								
Cur	rent	Time			Calculated Current			Calculated Power
Active [mA]	Sleep [mA]	Active [ms]	Sleep [ms]	Total [ms]	Peak [mA]	Average [mA]	24h [mA_ hours]	Power required [μW]
18	0.004	3	997	1000	18	0.057988	1.391712	187.88112



Thermal Energy Harvesting System

► Example Use Case - Wireless Harvester

▶ Demo kits to be made available by Q3 '15

Thank you

Thankyou for listening

The Adaptive Plant Energy Harvesting project,
Project number 131189, was co-funded by Innovate UK.

Project partners: ETL and University of Glasgow

Lead PI from UoG: Professor Andy Knox – Electronics and Nanoscale Eng.

